Joint Learning of Answer Selection and Answer Summary Generation in Community Question Answering
نویسندگان
چکیده
منابع مشابه
Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of questionanswer pair firstly, and then uses the joint representation as input of the...
متن کاملSemEval-2015 Task 3: Answer Selection in Community Question Answering
Community Question Answering (cQA) provides new interesting research directions to the traditional Question Answering (QA) field, e.g., the exploitation of the interaction between users and the structure of related posts. In this context, we organized SemEval2015 Task 3 on Answer Selection in cQA, which included two subtasks: (a) classifying answers as good, bad, or potentially relevant with re...
متن کاملAnswer Attenuation in Question Answering
Research in Question Answering (QA) has been dominated by the TREC methodology of black-box system evaluation. This makes it difficult to evaluate the effectiveness of individual components and requires human involvement. We have collected a set of answer locations within the AQUAINT corpus for a sample of TREC questions, in doing so we also analyse the ability of humans to retrieve answers. Ou...
متن کاملAnswer Formulation for Question-Answering
In this paper, we describe our experimentations in answer formulation for question-answering (QA) systems. In the context of QA, answer formulation can serve two purposes: improving answer extraction or improving human-computer interaction (HCI). Each purpose has different precision/recall requirements. We present our experiments for both purposes and argue that formulations of better linguisti...
متن کاملMetadata-Aware Measures for Answer Summarization in Community Question Answering
This paper presents a framework for automatically processing information coming from community Question Answering (cQA) portals with the purpose of generating a trustful, complete, relevant and succinct summary in response to a question. We exploit the metadata intrinsically present in User Generated Content (UGC) to bias automatic multi-document summarization techniques toward high quality inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i05.6266